Исходной по формуле: A^-1 = A*/detA, где A* - присоединенная матрица, detA - исходной матрицы. Присоединенная матрица - это транспонированная матрица дополнений к элементам исходной матрицы.

Первым делом найдите определитель матрицы, он должен быть отличен от нуля, так как дальше определитель будет использоваться в качестве делителя. Пусть для примера дана матрица третьего (состоящая из трех строк и трех столбцов). Как видно, определитель матрицы не равен нулю, поэтому существует обратная матрица.

Найдите дополнения к каждому элементу матрицы A. Дополнением к A называется определитель подматрицы, полученной из исходной вычеркиванием i-ой строки и j-го столбца, причем этот определитель берется со знаком. Знак определяется умножением определителя на (-1) в степени i+j. Таким образом, например, дополнением к A будет определитель, рассмотренный на рисунке. Знак получился так: (-1)^(2+1) = -1.

В результате вы получите матрицу дополнений, теперь транспонируйте ее. Транспонирование - это операция, симметричная относительно главной диагонали матрицы, столбцы и строки меняются местами. Таким образом, вы нашли присоединенную матрицу A*.

Обратная матрица — это матрица A −1 , при умножении на которую заданная начальная матрица A даёт в итоге единичную матрицу E :

АA −1 = A −1 A = E.

Метод обратной матрицы.

Метод обратной матрицы - это один из самых распространенных методов решения матриц и применяется для решения систем линейных алгебраических уравнений (СЛАУ) в случаях, когда число неизвестных соответствует количеству уравнений.

Пусть есть система n линейных уравнений с n неизвестными:

Такую систему можно записать как матричное уравнение A* X = B ,

где
- матрица системы,

- столбец неизвестных,

- столбец свободных коэффициентов.

Из выведенного матричного уравнения выражаем X путем умножения обеих частей матричного уравнения слева на A -1 , в результате чего имеем:

A -1 * A * X = A -1 * B

Зная, что A -1 * A = E , тогда E * X = A -1 * B либо X = A -1 * B .

Следующим шагом определяется обратная матрица A -1 и умножается на столбец свободных членов B .

Обратная матрица к матрице A существует лишь тогда, когда det A ≠ 0 . Ввиду этого при решении СЛАУ методом обратной матрицы первым делом находится det A . Если det A ≠ 0 , то у системы есть только одно решение, которое можно получить методом обратной матрицы, если же det A = 0 , то такая система методом обратной матрицы не решается.

Решение обратной матрицы.

Последовательность действий для решения обратной матрицы :

  1. Получаем определитель матрицы A . Если определитель больше нуля, решаем обратную матрицы дальше, если он равен нулю, то здесь обратную матрицу найти не удастся.
  2. Находим транспонированную матрицу AT .
  3. Ищем алгебраические дополнения, после чего заменяем все элементы матрицы их алгебраическими дополнениями.
  4. Собираем обратную матрицу из алгебраических дополнений: все элементы полученной матрицы делим на определитель исходно заданной матрицы. Итоговая матрица будет искомой обратной матрицей относительно исходной.

Приведенный ниже алгоритм решения обратной матрицы по сути такой же, как и приведенный выше, разница только в нескольких шагах: первым делом определяем алгебраические дополнения, а уже после этого вычисляем союзную матрицу C .

  1. Понять, квадратная ли данная матрица. В случае отрицательного ответа становится ясно, что обратной матрицы для нее не может быть.
  2. Понять, квадратная ли данная матрица. В случае отрицательного ответа становится ясно, что обратной матрицы для нее не может быть.
  3. Вычисляем алгебраические дополнения.
  4. Составляем союзную (взаимную, присоединённую) матрицу C .
  5. Составляем обратную матрицу из алгебраических дополнений: все элементы присоединённой матрицы C делим на определитель начальной матрицы. Итоговая матрица будет искомой обратной матрицей относительно заданной.
  6. Проверяем выполненную работу: умножаем начальную и полученную матрицы, результатом должна стать единичная матрица.

Это лучше всего делать с помощью присоединённой матрицы.

Теорема: Если к квадратной матрице с правой стороны приписать единичную матрицу такого же порядка и при помощи элементарных преобразований над строками преобразовать начальную матрицу, стоящую слева, в единичную, то полученная с правой стороны будет обратной к начальной.

Пример нахождения обратной матрицы.

Задание. Для матрицы найти обратную методом присоединенной матрицы .

Решение. Дописываем к заданной матрице А справа единичную матрицу 2го порядка:

Из 1й строки вычитаем 2ю:

От второй строки отнимаем 2 первых:

В данной статье мы расскажем о матричном методе решения системы линейных алгебраических уравнений, найдем его определение и приведем примеры решения.

Определение 1

Метод обратной матрицы - это метод, использующийся при решении СЛАУ в том случае, если число неизвестных равняется числу уравнений.

Пример 1

Найти решение системы n линейных уравнений с n неизвестными:

a 11 x 1 + a 12 x 2 + . . . + a 1 n x n = b 1 a n 1 x 1 + a n 2 x 2 + . . . + a n n x n = b n

Матричный вид записи : А × X = B

где А = а 11 а 12 ⋯ а 1 n а 21 а 22 ⋯ а 2 n ⋯ ⋯ ⋯ ⋯ а n 1 а n 2 ⋯ а n n - матрица системы.

X = x 1 x 2 ⋮ x n - столбец неизвестных,

B = b 1 b 2 ⋮ b n - столбец свободных коэффициентов.

Из уравнения, которое мы получили, необходимо выразить X . Для этого нужно умножить обе части матричного уравнения слева на A - 1:

A - 1 × A × X = A - 1 × B .

Так как А - 1 × А = Е, то Е × X = А - 1 × В или X = А - 1 × В.

Замечание

Обратная матрица к матрице А имеет право на существование только, если выполняется условие d e t A н е р а в е н н у л ю. Поэтому при решении СЛАУ методом обратной матрицы, в первую очередь находится d e t А.

В том случае, если d e t A н е р а в е н н у л ю, у системы имеется только один вариант решения: при помощи метода обратной матрицы. Если d e t А = 0 , то систему нельзя решить данным методом.

Пример решения системы линейных уравнений с помощью метода обратной матрицы

Пример 2

Решаем СЛАУ методом обратной матрицы:

2 x 1 - 4 x 2 + 3 x 3 = 1 x 1 - 2 x 2 + 4 x 3 = 3 3 x 1 - x 2 + 5 x 3 = 2

Как решить?

  • Записываем систему в виде матричного уравнения А X = B , где

А = 2 - 4 3 1 - 2 4 3 - 1 5 , X = x 1 x 2 x 3 , B = 1 3 2 .

  • Выражаем из этого уравнения X:
  • Находим определитель матрицы А:

d e t A = 2 - 4 3 1 - 2 4 3 - 1 5 = 2 × (- 2) × 5 + 3 × (- 4) × 4 + 3 × (- 1) × 1 - 3 × (- 2) × 3 - - 1 × (- 4) × 5 - 2 × 4 - (- 1) = - 20 - 48 - 3 + 18 + 20 + 8 = - 25

d e t А не равняется 0, следовательно для этой системы подходит метод решения обратной матрицей.

  • Находим обратную матрицу А - 1 при помощи союзной матрицы. Вычисляем алгебраические дополнения А i j к соответствующим элементам матрицы А:

А 11 = (- 1) (1 + 1) - 2 4 - 1 5 = - 10 + 4 = - 6 ,

А 12 = (- 1) 1 + 2 1 4 3 5 = - (5 - 12) = 7 ,

А 13 = (- 1) 1 + 3 1 - 2 3 - 1 = - 1 + 6 = 5 ,

А 21 = (- 1) 2 + 1 - 4 3 - 1 5 = - (- 20 + 3) = 17 ,

А 22 = (- 1) 2 + 2 2 3 3 5 - 10 - 9 = 1 ,

А 23 = (- 1) 2 + 3 2 - 4 3 - 1 = - (- 2 + 12) = - 10 ,

А 31 = (- 1) 3 + 1 - 4 3 - 2 4 = - 16 + 6 = - 10 ,

А 32 = (- 1) 3 + 2 2 3 1 4 = - (8 - 3) = - 5 ,

А 33 = (- 1) 3 + 3 2 - 4 1 - 2 = - 4 + 4 = 0 .

  • Записываем союзную матрицу А * , которая составлена из алгебраических дополнений матрицы А:

А * = - 6 7 5 17 1 - 10 - 10 - 5 0

  • Записываем обратную матрицу согласно формуле:

A - 1 = 1 d e t A (A *) T: А - 1 = - 1 25 - 6 17 - 10 7 1 - 5 5 - 10 0 ,

  • Умножаем обратную матрицу А - 1 на столбец свободных членов В и получаем решение системы:

X = A - 1 × B = - 1 25 - 6 17 - 10 7 1 - 5 5 - 10 0 1 3 2 = - 1 25 - 6 + 51 - 20 7 + 3 - 10 5 - 30 + 0 = - 1 0 1

Ответ : x 1 = - 1 ; x 2 = 0 ; x 3 = 1

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Назначение сервиса. С помощью данного сервиса в онлайн режиме можно найти алгебраические дополнения, транспонированную матрицу AT, союзную матрицу и обратную матрицу.

Онлайн калькулятор. Обратная матрицы.

Решение проводится непосредственно на сайте (в онлайн режиме) и является бесплатным. Результаты вычислений оформляются в отчете формата Word и в формате Excel (т.е. имеется возможность проверить решение). см. пример оформления.

  1. Определяют, квадратная ли матрица. Если нет, то обратной матрицы для нее не существует.
  2. Вычисление определителя матрицы. Если он не равен нулю, продолжаем решение, иначе — обратной матрицы не существует.
  3. Делают проверку: перемножают исходную и полученную матрицы. В результате должна получиться единичная матрица.



Алгебраические дополнения.

1,1 = (-1 4-5 (-2)) = 6

1,2 = -(2 4-(-2 (-2))) = -4

1,3 = (2 5-(-2 (-1))) = 8

2,1 = -(2 4-5 3) = 7

2,2 = (-1 4-(-2 3)) = 2

2,3 = -(-1 5-(-2 2)) = 1

3,1 = (2 (-2)-(-1 3)) = -1

3,2 = -(-1 (-2)-2 3) = 4

3,3 = (-1 (-1)-2 2) = -3
Тогда обратную матрицу можно записать как:

A-1 =
0,6 -0,4 0,8
0,7 0,2 0,1
-0,1 0,4 -0,3

Нахождение обратной матрицы

Матрица А-1 называется обратной матрицей по отношению к матрице, если А*А-1 = , где - единичная матрица -го порядка. Обратная матрица может существовать только для квадратных матриц.

см. также Обратная матрица методом Жордано-Гаусса

Алгоритм нахождения обратной матрицы

  1. Определяют, квадратная ли матрица. Если нет, то обратной матрицы для нее не существует.
  2. Вычисление определителя матрицы. Если он не равен нулю, продолжаем решение, иначе — обратной матрицы не существует.
  3. Нахождение транспонированной матрицы AT.
  4. Определение алгебраических дополнений. Заменяют каждый элемент матрицы его алгебраическим дополнением.
  5. Составление обратной матрицы из алгебраических дополнений: каждый элемент полученной матрицы делят на определитель исходной матрицы. Результирующая матрица является обратной для исходной матрицы.
  6. Делают проверку: перемножают исходную и полученную матрицы. В результате должна получиться единичная матрица.

Следующий алгоритм нахождения обратной матрицы аналогичен предыдущему за исключением некоторых шагов: сначала вычисляются алгебраические дополнения, а затем определяется союзная матрица.

  1. Определяют, квадратная ли матрица. Если нет, то обратной матрицы для нее не существует.
  2. Вычисление определителя матрицы. Если он не равен нулю, продолжаем решение, иначе — обратной матрицы не существует.
  3. Определение алгебраических дополнений.
  4. Заполнение союзной (взаимной, присоединённой) матрицы.
  5. Составление обратной матрицы из алгебраических дополнений: каждый элемент присоединённой матрицы делят на определитель исходной матрицы. Результирующая матрица является обратной для исходной матрицы.
  6. Делают проверку: перемножают исходную и полученную матрицы. В результате должна получиться единичная матрица.

Пример №1. Запишем матрицу в виде:

Обратная матрица существует, если определитель матрицы отличен от нуля. Найдем определитель матрицы:
= -1 (-1 4-(-2 5))-2 (2 4-(-2 (-2)))+3 (2 5-(-1 (-2))) = 10. Определитель равен 10 и не равен нулю. Продолжаем решение.
Найдем транспонированную матрицу:
Алгебраические дополнения.

1,1 = (-1 4-5 (-2)) = 6

1,2 = -(2 4-(-2 (-2))) = -4

1,3 = (2 5-(-2 (-1))) = 8

2,1 = -(2 4-5 3) = 7

2,2 = (-1 4-(-2 3)) = 2

2,3 = -(-1 5-(-2 2)) = 1

3,1 = (2 (-2)-(-1 3)) = -1

3,2 = -(-1 (-2)-2 3) = 4

3,3 = (-1 (-1)-2 2) = -3
Тогда обратную матрицу можно записать как:

A-1 =
0,6 -0,4 0,8
0,7 0,2 0,1
-0,1 0,4 -0,3

Другой алгоритм нахождения обратной матрицы

Приведем другую схему нахождения обратной матрицы.

  1. Находим определитель данной квадратной матрицы.
  2. Находим алгебраические дополнения ко всем элементам матрицы.
  3. Записываем алгебраические дополнения элементов строк в столбцы (транспонирование).
  4. Делим каждый элемент полученной матрицы на определитель матрицы.

Как видим, операция транспонирования может применяться как в начале, над исходной матрицей, так и в конце, над полученными алгебраическими дополнениями.

Особый случай: Обратной, по отношению к единичной матрице, является единичная матрица.

Пример №2. Найти матрицу, обратную матрице .
Решение.
1. Найдем
.
2. Ищем алгебраические дополнения каждого элемента матрицы A:
; ; .
Получили алгебраические дополнения элементов первой строки.

Найти обратную матрицу онлайн

Аналогично для элементов второй и третьей строк получаем:
; ; .
; ; .
Объединяя 3 и 4 пункты, получаем обратную матрицу

.
Для проверки убедимся, что A-1A = E.

Инструкция. Для получения решения необходимо задать размерность матрицы. Далее в новом диалоговом окне заполните матрицу.

Нахождение обратной матрицы

Матрица А-1 называется обратной матрицей по отношению к матрице, если А*А-1 = , где - единичная матрица -го порядка. Обратная матрица может существовать только для квадратных матриц.

Назначение сервиса. С помощью данного сервиса в онлайн режиме можно найти алгебраические дополнения, транспонированную матрицу AT, союзную матрицу и обратную матрицу. Решение проводится непосредственно на сайте (в онлайн режиме) и является бесплатным. Результаты вычислений оформляются в отчете формата Word и в формате Excel (т.е. имеется возможность проверить решение). см. пример оформления.

Нахождение обратной матрицы онлайн

см. также Обратная матрица методом Жордано-Гаусса

Алгоритм нахождения обратной матрицы

  1. Определяют, квадратная ли матрица. Если нет, то обратной матрицы для нее не существует.
  2. Вычисление определителя матрицы. Если он не равен нулю, продолжаем решение, иначе — обратной матрицы не существует.
  3. Нахождение транспонированной матрицы AT.
  4. Определение алгебраических дополнений. Заменяют каждый элемент матрицы его алгебраическим дополнением.
  5. Составление обратной матрицы из алгебраических дополнений: каждый элемент полученной матрицы делят на определитель исходной матрицы. Результирующая матрица является обратной для исходной матрицы.
  6. Делают проверку: перемножают исходную и полученную матрицы. В результате должна получиться единичная матрица.

Следующий алгоритм нахождения обратной матрицы аналогичен предыдущему за исключением некоторых шагов: сначала вычисляются алгебраические дополнения, а затем определяется союзная матрица.

  1. Определяют, квадратная ли матрица. Если нет, то обратной матрицы для нее не существует.
  2. Вычисление определителя матрицы. Если он не равен нулю, продолжаем решение, иначе — обратной матрицы не существует.
  3. Определение алгебраических дополнений.
  4. Заполнение союзной (взаимной, присоединённой) матрицы.
  5. Составление обратной матрицы из алгебраических дополнений: каждый элемент присоединённой матрицы делят на определитель исходной матрицы. Результирующая матрица является обратной для исходной матрицы.
  6. Делают проверку: перемножают исходную и полученную матрицы. В результате должна получиться единичная матрица.

Пример №1. Запишем матрицу в виде:

Обратная матрица существует, если определитель матрицы отличен от нуля. Найдем определитель матрицы:
= -1 (-1 4-(-2 5))-2 (2 4-(-2 (-2)))+3 (2 5-(-1 (-2))) = 10. Определитель равен 10 и не равен нулю. Продолжаем решение.
Найдем транспонированную матрицу:
Алгебраические дополнения.

1,1 = (-1 4-5 (-2)) = 6

1,2 = -(2 4-(-2 (-2))) = -4

1,3 = (2 5-(-2 (-1))) = 8

2,1 = -(2 4-5 3) = 7

2,2 = (-1 4-(-2 3)) = 2

2,3 = -(-1 5-(-2 2)) = 1

3,1 = (2 (-2)-(-1 3)) = -1

3,2 = -(-1 (-2)-2 3) = 4

3,3 = (-1 (-1)-2 2) = -3
Тогда обратную матрицу можно записать как:

A-1 =
0,6 -0,4 0,8
0,7 0,2 0,1
-0,1 0,4 -0,3

Другой алгоритм нахождения обратной матрицы

Приведем другую схему нахождения обратной матрицы.

  1. Находим определитель данной квадратной матрицы.
  2. Находим алгебраические дополнения ко всем элементам матрицы.
  3. Записываем алгебраические дополнения элементов строк в столбцы (транспонирование).
  4. Делим каждый элемент полученной матрицы на определитель матрицы.

Как видим, операция транспонирования может применяться как в начале, над исходной матрицей, так и в конце, над полученными алгебраическими дополнениями.

Для проверки убедимся, что A-1A = E.

Инструкция. Для получения решения необходимо задать размерность матрицы. Далее в новом диалоговом окне заполните матрицу.

Нахождение обратной матрицы является важной составляющей в разделе линейной алгебры. С помощью таких матриц, если они существуют, можно быстро найти решение системы линейных уравнений.

Матрицаназывается обратной к матрице,если выполняются следующие равенства.

Если определитель матрицыотличен от нуля, то матрицу называют не особо или невырожденной.

Для того, чтобы матрица имела обратную необходимо и достаточно, чтобы она была невырожденной

Алгоритм нахождения обратной матрицы

Пусть имеем квадратную матрицу

и нужно найти обратную к ней. Для этого нужно выполнить следующие действия:

1. Найти определитель матрицы. Если он не равен нулю то выполняем следующие действия. В противном случае данная матрица вырождена и для нее не существует обратной

2. Найти алгебраические дополнения элементов матрицы . Они равны минорам, умноженным на в степени суммы строки и столбца, для которого ищем.

3. Составить матрицу из алгебраических дополнений элементов матрицы матрицы и протранспонировать ее. Эта матрица называется присоединенной или союзной и обозначается .

4. Разделить присоединенную матрицу на детерминант . Полученная матрица будет обратной и иметь свойства, которые изложены в начале статьи.

Найти матрицу, обратную к матрице (Дубовик В.П., Юрик И.И.

Нахождение обратной матрицы

"Высшая математика. Сборник задач")

1)Находим определитель матрицы

Так как детерминант не равен нулю (), то обратная матрица существует. Находим матрицу, составленную из алгебраических дополнений

Матрица дополнений примет вид

Транспонируем ее и получаем присоединенную

Разделим ее на определитель и получим обратную

Видим, что в случае, когда определитель равен единице присоединена и обратная матрицы совпадают.

2) Вычисляем определитель матрицы

Находим матрицу алгебраических дополнений

Конечный вид матрицы дополнений

Транспонируем ее и находим союзную матрицу

Находим обратную матрицу

3) Вычислим детерминант матрицы. Для этого разложим его на первую строчку. В результате получим два отличны от нуля слагаемые

Находим матрицу алгебраических дополнений. Расписание определителя проводим по строкам и столбцам, в которых больше нулевых элементов (обозначены черным цветом).

Конечный вид матрицы дополнений следующий

Транспонируем ее и находим присоединенную матрицу

Поскольку определитель матрицы равен единице то обратная матрица совпадает с присоединенной. Данный пример назад.

При вычислениях обратной матрицы типичными являются ошибки связанные с неправильными знаками при вычислении определителя и матрицы дополнений.

Высшая математика » Матрицы и определители » Обратная матрица » Вычисление обратной матрицы с помощью алгебраических дополнений.

Алгоритм вычисления обратной матрицы с помощью алгебраических дополнений: метод присоединённой (союзной) матрицы.

Матрица $A^{-1}$ называется обратной по отношению к квадратной матрице $A$, если выполнено условие $A^{-1}\cdot A=A\cdot A^{-1}=E$, где $E$ – единичная матрица, порядок которой равен порядку матрицы $A$.

Невырожденная матрица – матрица, определитель которой не равен нулю. Соответственно, вырожденная матрица – та, у которой равен нулю определитель.

Обратная матрица $A^{-1}$ существует тогда и только тогда, когда матрица $A$ – невырожденная. Если обратная матрица $A^{-1}$ существует, то она единственная.

Есть несколько способов нахождения обратной матрицы, и мы рассмотрим два из них. На этой странице будет рассмотрен метод присоединённой матрицы, который полагается стандартным в большинстве курсов высшей математики. Второй способ нахождения обратной матрицы (метод элементарных преобразований), который предполагает использование метода Гаусса или метода Гаусса-Жордана, рассмотрен во второй части.

Метод присоединённой (союзной) матрицы

Пусть задана матрица $A_{n\times n}$. Для того, чтобы найти обратную матрицу $A^{-1}$, требуется осуществить три шага:

  1. Найти определитель матрицы $A$ и убедиться, что $\Delta A\neq 0$, т.е. что матрица А – невырожденная.
  2. Составить алгебраические дополнения $A_{ij}$ каждого элемента матрицы $A$ и записать матрицу $A_{n\times n}^{*}=\left(A_{ij} \right)$ из найденных алгебраических дополнений.
  3. Записать обратную матрицу с учетом формулы $A^{-1}=\frac{1}{\Delta A}\cdot {A^{*}}^T$.

Матрицу ${A^{*}}^T$ часто именуют присоединённой (взаимной, союзной) к матрице $A$.

Если решение происходит вручную, то первый способ хорош лишь для матриц сравнительно небольших порядков: второго (пример №2), третьего (пример №3), четвертого (пример №4). Чтобы найти обратную матрицу для матрицы высшего порядка, используются иные методы. Например, метод Гаусса, который рассмотрен во второй части.

Пример №1

Найти матрицу, обратную к матрице $A=\left(\begin{array} {cccc} 5 & -4 &1 & 0 \\ 12 &-11 &4 & 0 \\ -5 & 58 &4 & 0 \\ 3 & -1 & -9 & 0 \end{array} \right)$.

Обратная матрица

Так как все элементы четвёртого столбца равны нулю, то $\Delta A=0$ (т.е. матрица $A$ является вырожденной). Так как $\Delta A=0$, то обратной матрицы к матрице $A$ не существует.

Пример №2

Найти матрицу, обратную к матрице $A=\left(\begin{array} {cc} -5 & 7 \\ 9 & 8 \end{array}\right)$.

Используем метод присоединённой матрицы. Сначала найдем определитель заданной матрицы $A$:

$$ \Delta A=\left| \begin{array} {cc} -5 & 7\\ 9 & 8 \end{array}\right|=-5\cdot 8-7\cdot 9=-103. $$

Так как $\Delta A \neq 0$, то обратная матрица существует, посему продолжим решение. Находим алгебраические дополнения каждого элемента заданной матрицы:

\begin{aligned} & A_{11}=(-1)^2\cdot 8=8; \; A_{12}=(-1)^3\cdot 9=-9;\\ & A_{21}=(-1)^3\cdot 7=-7; \; A_{22}=(-1)^4\cdot (-5)=-5.\\ \end{aligned}

Составляем матрицу из алгебраических дополнений: $A^{*}=\left(\begin{array} {cc} 8 & -9\\ -7 & -5 \end{array}\right)$.

Транспонируем полученную матрицу: ${A^{*}}^T=\left(\begin{array} {cc} 8 & -7\\ -9 & -5 \end{array}\right)$ (полученная матрица часто именуется присоединённой или союзной матрицей к матрице $A$). Используя формулу $A^{-1}=\frac{1}{\Delta A}\cdot {A^{*}}^T$, имеем:

$$ A^{-1}=\frac{1}{-103}\cdot \left(\begin{array} {cc} 8 & -7\\ -9 & -5 \end{array}\right)=\left(\begin{array} {cc} -8/103 & 7/103\\ 9/103 & 5/103 \end{array}\right) $$

Итак, обратная матрица найдена: $A^{-1}=\left(\begin{array} {cc} -8/103 & 7/103\\ 9/103 & 5/103 \end{array}\right)$. Чтобы проверить истинность результата, достаточно проверить истинность одного из равенств: $A^{-1}\cdot A=E$ или $A\cdot A^{-1}=E$. Проверим выполнение равенства $A^{-1}\cdot A=E$. Дабы поменьше работать с дробями, будем подставлять матрицу $A^{-1}$ не в форме $\left(\begin{array} {cc} -8/103 & 7/103\\ 9/103 & 5/103 \end{array}\right)$, а в виде $-\frac{1}{103}\cdot \left(\begin{array} {cc} 8 & -7\\ -9 & -5 \end{array}\right)$:

Ответ: $A^{-1}=\left(\begin{array} {cc} -8/103 & 7/103\\ 9/103 & 5/103 \end{array}\right)$.

Пример №3

Найти обратную матрицу для матрицы $A=\left(\begin{array} {ccc} 1 & 7 & 3 \\ -4 & 9 & 4 \\ 0 & 3 & 2\end{array} \right)$.

Начнём с вычисления определителя матрицы $A$. Итак, определитель матрицы $A$ таков:

$$ \Delta A=\left| \begin{array} {ccc} 1 & 7 & 3 \\ -4 & 9 & 4 \\ 0 & 3 & 2\end{array} \right| = 18-36+56-12=26. $$

Так как $\Delta A\neq 0$, то обратная матрица существует, посему продолжим решение. Находим алгебраические дополнения каждого элемента заданной матрицы:

Составляем матрицу из алгебраических дополнений и транспонируем её:

$$ A^*=\left(\begin{array} {ccc} 6 & 8 & -12 \\ -5 & 2 & -3 \\ 1 & -16 & 37\end{array} \right); \; {A^*}^T=\left(\begin{array} {ccc} 6 & -5 & 1 \\ 8 & 2 & -16 \\ -12 & -3 & 37\end{array} \right) $$

Используя формулу $A^{-1}=\frac{1}{\Delta A}\cdot {A^{*}}^T$, получим:

$$ A^{-1}=\frac{1}{26}\cdot \left(\begin{array} {ccc} 6 & -5 & 1 \\ 8 & 2 & -16 \\ -12 & -3 & 37\end{array} \right)= \left(\begin{array} {ccc} 3/13 & -5/26 & 1/26 \\ 4/13 & 1/13 & -8/13 \\ -6/13 & -3/26 & 37/26 \end{array} \right) $$

Итак, $A^{-1}=\left(\begin{array} {ccc} 3/13 & -5/26 & 1/26 \\ 4/13 & 1/13 & -8/13 \\ -6/13 & -3/26 & 37/26 \end{array} \right)$. Чтобы проверить истинность результата, достаточно проверить истинность одного из равенств: $A^{-1}\cdot A=E$ или $A\cdot A^{-1}=E$. Проверим выполнение равенства $A\cdot A^{-1}=E$. Дабы поменьше работать с дробями, будем подставлять матрицу $A^{-1}$ не в форме $\left(\begin{array} {ccc} 3/13 & -5/26 & 1/26 \\ 4/13 & 1/13 & -8/13 \\ -6/13 & -3/26 & 37/26 \end{array} \right)$, а в виде $\frac{1}{26}\cdot \left(\begin{array} {ccc} 6 & -5 & 1 \\ 8 & 2 & -16 \\ -12 & -3 & 37\end{array} \right)$:

Проверка пройдена успешно, обратная матрица $A^{-1}$ найдена верно.

Ответ: $A^{-1}=\left(\begin{array} {ccc} 3/13 & -5/26 & 1/26 \\ 4/13 & 1/13 & -8/13 \\ -6/13 & -3/26 & 37/26 \end{array} \right)$.

Пример №4

Найти матрицу, обратную матрице $A=\left(\begin{array} {cccc} 6 & -5 & 8 & 4\\ 9 & 7 & 5 & 2 \\ 7 & 5 & 3 & 7\\ -4 & 8 & -8 & -3 \end{array} \right)$.

Для матрицы четвёртого порядка нахождение обратной матрицы с помощью алгебраических дополнений несколько затруднительно. Однако такие примеры в контрольных работах встречаются.

Чтобы найти обратную матрицу, для начала нужно вычислить определитель матрицы $A$. Лучше всего в данной ситуации это сделать с помощью разложения определителя по строке (столбцу). Выбираем любую строку или столбец и находим алгебраические дополнения каждого элемента избранной строки или столбца.

Например, для первой строки получим:

Определитель матрицы $A$ вычислим по следующей формуле:

$$ \Delta A=a_{11}\cdot A_{11}+a_{12}\cdot A_{12}+a_{13}\cdot A_{13}+a_{14}\cdot A_{14}=6\cdot 556+(-5)\cdot(-300)+8\cdot(-536)+4\cdot(-112)=100. $$

Матрица из алгебраических дополнений: $A^*=\left(\begin{array}{cccc} 556 & -300 & -536 & -112\\ -77 & 50 & 87 & 4 \\ -93 & 50 & 83 & 36\\ 473 & -250 & -463 & -96\end{array}\right)$.

Присоединённая матрица: ${A^*}^T=\left(\begin{array} {cccc} 556 & -77 & -93 & 473\\ -300 & 50 & 50 & -250 \\ -536 & 87 & 83 & -463\\ -112 & 4 & 36 & -96\end{array}\right)$

Обратная матрица:

$$ A^{-1}=\frac{1}{100}\cdot \left(\begin{array} {cccc} 556 & -77 & -93 & 473\\ -300 & 50 & 50 & -250 \\ -536 & 87 & 83 & -463\\ -112 & 4 & 36 & -96 \end{array} \right)= \left(\begin{array} {cccc} 139/25 & -77/100 & -93/100 & 473/100 \\ -3 & 1/2 & 1/2 & -5/2 \\ -134/25 & 87/100 & 83/100 & -463/100 \\ -28/25 & 1/25 & 9/25 & -24/25 \end{array} \right) $$

Проверка:

Следовательно, обратная матрица найдена верно.

Ответ: $A^{-1}=\left(\begin{array} {cccc} 139/25 & -77/100 & -93/100 & 473/100 \\ -3 & 1/2 & 1/2 & -5/2 \\ -134/25 & 87/100 & 83/100 & -463/100 \\ -28/25 & 1/25 & 9/25 & -24/25 \end{array} \right)$.

Во второй части будет рассмотрен иной способ нахождения обратной матрицы, который предполагает использование преобразований метода Гаусса или метода Гаусса-Жордана.

Онлайн-занятия по высшей математике

Нахождение обратной матрицы

Матрица А-1 называется обратной матрицей по отношению к матрице, если А*А-1 = , где - единичная матрица -го порядка. Обратная матрица может существовать только для квадратных матриц.

Назначение сервиса. С помощью данного сервиса в онлайн режиме можно найти алгебраические дополнения, транспонированную матрицу AT, союзную матрицу и обратную матрицу. Решение проводится непосредственно на сайте (в онлайн режиме) и является бесплатным. Результаты вычислений оформляются в отчете формата Word и в формате Excel (т.е. имеется возможность проверить решение). см. пример оформления.

см. также Обратная матрица методом Жордано-Гаусса

Алгоритм нахождения обратной матрицы

  1. Определяют, квадратная ли матрица. Если нет, то обратной матрицы для нее не существует.
  2. Вычисление определителя матрицы. Если он не равен нулю, продолжаем решение, иначе — обратной матрицы не существует.
  3. Нахождение транспонированной матрицы AT.
  4. Определение алгебраических дополнений. Заменяют каждый элемент матрицы его алгебраическим дополнением.
  5. Составление обратной матрицы из алгебраических дополнений: каждый элемент полученной матрицы делят на определитель исходной матрицы. Результирующая матрица является обратной для исходной матрицы.
  6. Делают проверку: перемножают исходную и полученную матрицы. В результате должна получиться единичная матрица.

Следующий алгоритм нахождения обратной матрицы аналогичен предыдущему за исключением некоторых шагов: сначала вычисляются алгебраические дополнения, а затем определяется союзная матрица.

  1. Определяют, квадратная ли матрица. Если нет, то обратной матрицы для нее не существует.
  2. Вычисление определителя матрицы. Если он не равен нулю, продолжаем решение, иначе — обратной матрицы не существует.
  3. Определение алгебраических дополнений.
  4. Заполнение союзной (взаимной, присоединённой) матрицы.
  5. Составление обратной матрицы из алгебраических дополнений: каждый элемент присоединённой матрицы делят на определитель исходной матрицы. Результирующая матрица является обратной для исходной матрицы.
  6. Делают проверку: перемножают исходную и полученную матрицы. В результате должна получиться единичная матрица.

Пример №1. Запишем матрицу в виде:

Обратная матрица существует, если определитель матрицы отличен от нуля. Найдем определитель матрицы:
= -1 (-1 4-(-2 5))-2 (2 4-(-2 (-2)))+3 (2 5-(-1 (-2))) = 10. Определитель равен 10 и не равен нулю. Продолжаем решение.
Найдем транспонированную матрицу:
Алгебраические дополнения.

1,1 = (-1 4-5 (-2)) = 6

1,2 = -(2 4-(-2 (-2))) = -4

1,3 = (2 5-(-2 (-1))) = 8

2,1 = -(2 4-5 3) = 7

2,2 = (-1 4-(-2 3)) = 2

2,3 = -(-1 5-(-2 2)) = 1

3,1 = (2 (-2)-(-1 3)) = -1

3,2 = -(-1 (-2)-2 3) = 4

3,3 = (-1 (-1)-2 2) = -3
Тогда обратную матрицу можно записать как:

A-1 =
0,6 -0,4 0,8
0,7 0,2 0,1
-0,1 0,4 -0,3

Другой алгоритм нахождения обратной матрицы

Приведем другую схему нахождения обратной матрицы.

  1. Находим определитель данной квадратной матрицы.
  2. Находим алгебраические дополнения ко всем элементам матрицы.
  3. Записываем алгебраические дополнения элементов строк в столбцы (транспонирование).
  4. Делим каждый элемент полученной матрицы на определитель матрицы.

Как видим, операция транспонирования может применяться как в начале, над исходной матрицей, так и в конце, над полученными алгебраическими дополнениями.

Для проверки убедимся, что A-1A = E.

Инструкция. Для получения решения необходимо задать размерность матрицы. Далее в новом диалоговом окне заполните матрицу.

Пусть имеется квадратная матрица n-го порядка

Матрица А -1 называется обратной матрицей по отношению к матрице А, если А*А -1 = Е, где Е — единичная матрица n-го порядка.

Единичная матрица — такая квадратная матрица, у которой все элементы по главной диагонали, проходящей от левого верхнего угла к правому нижнему углу, — единицы, а остальные — нули, например:

Обратная матрица может существовать только для квадратных матриц т.е. для тех матриц, у которых число строк и столбцов совпадают.

Теорема условия существования обратной матрицы

Для того чтобы матрица имела обратную матрицу необходимо и достаточно, чтобы она была невырожденной.

Матрица А = (А1, А2,...А n) называется невырожденной , если векторы-столбцы являются линейно независимыми. Число линейно независимых векторов-столбцов матрицы называется рангом матрицы . Поэтому можно сказать, что для того, чтобы существовала обратная матрица, необходимо и достаточно, чтобы ранг матрицы равнялся ее размерности, т.е. r = n.

Алгоритм нахождения обратной матрицы

  1. Записать в таблицу для решения систем уравнений методом Гаусса матрицу А и справа (на место правых частей уравнений) приписать к ней матрицу Е.
  2. Используя преобразования Жордана, привести матрицу А к матрице, состоящей из единичных столбцов; при этом необходимо одновременно преобразовать матрицу Е.
  3. Если необходимо, то переставить строки (уравнения) последней таблицы так, чтобы под матрицей А исходной таблицы получилась единичная матрица Е.
  4. Записать обратную матрицу А -1 , которая находится в последней таблице под матрицей Е исходной таблицы.
Пример 1

Для матрицы А найти обратную матрицу А -1

Решение: Записываем матрицу А и справа приписываем единичную матрицу Е. Используя преобразования Жордана, приводим матрицу А к единичной матрице Е. Вычисления приведены в таблице 31.1.

Проверим правильность вычислений умножением исходной матрицы А и обратной матрицы А -1 .

В результате умножения матриц получилась единичная матрица. Следовательно, вычисления произведены правильно.

Ответ:

Решение матричных уравнений

Матричные уравнения могут иметь вид:

АХ = В, ХА = В, АХВ = С,

где А,В,С — задаваемые матрицы, Х- искомая матрица.

Матричные уравнения решаются с помощью умножения уравнения на обратные матрицы.

Например, чтобы найти матрицу из уравнения , необходимо умножить это уравнение на слева.

Следовательно, чтобы найти решение уравнения , нужно найти обратную матрицу и умножить ее на матрицу , стоящие в правой части уравнения.

Аналогично решаются другие уравнения.

Пример 2

Решить уравнение АХ = В, если

Решение : Так как обратная матрица равняется (см. пример 1)

Матричный метод в экономическом анализе

Наряду с другими в находят применение также матричные методы . Эти методы базируются на линейной и векторно-матричной алгебре. Такие методы применяются для целей анализа сложных и многомерных экономических явлений. Чаще всего эти методы используются при необходимости сравнительной оценки функционирования организаций и их структурных подразделений.

В процессе применения матричных методов анализа можно выделить несколько этапов.

На первом этапе осуществляется формирование системы экономических показателей и на ее основе составляется матрица исходных данных , которая представляет собой таблицу, в которой по ее отдельным строкам показываются номера систем (i = 1,2,....,n) , а по вертикальным графам — номера показателей (j = 1,2,....,m) .

На втором этапе по каждой вертикальной графе выявляется наибольшее из имеющихся значений показателей, которое и принимается за единицу.

После этого все суммы, отраженные в данной графе делят на наибольшее значение и формируется матрица стандартизированных коэффициентов .

На третьем этапе все составные части матрицы возводят в квадрат. Если они имеют различную значимость, то каждому показателю матрицы присваивается определенный весовой коэффициент k . Величина последнего определяется экспертным путем.

На последнем, четвертом этапе найденные величины рейтинговых оценок R j группируются в порядке их увеличения или уменьшения.

Изложенные матричные методы следует использовать, например, при сравнительном анализе различных инвестиционных проектов, а также при оценке других экономических показателей деятельности организаций.